Abstract

Thin films of isotactic polypropylene (iPP) are of great economical importance and their production is quite challenging due to the need of very fast uniaxial or biaxial expansion. During the expansion, critical problems usually arise, like structure disruption, shear thinning, causing material, energy and time losses. This work aims to study the surface morphology and compare the thermal, mechanical properties of PP films irradiated by gamma ray in an acetylene atmosphere after uniaxial expansion. PP films were made by compression molding at 190 °C with cooling in water at room temperature and irradiated by gamma ray, at (5, 12.5 and 20 kGy) under acetylene atmosphere. After irradiation the samples were submitted to thermal treatment at 90 °C for 1 h and then stretched out at 170 °C using an Instron machine. The surface of PP films, pristine and modified, (i.e., irradiated), was studied using optical microscopy (OM) and scanning electron microscopy (SEM). The changes in morphology, crystallinity and tensile parameters, like yield stress, rupture stress and elongation strain of the PP with irradiation dose were investigated. The results showed some evidences of gel formation due to crosslinking and/or long chain branching induced by radiation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call