Abstract

In this study, a new precipitation hardening stainless steel (PHSS), C-X stainless steel, was manufactured using selective laser melting (SLM) technology. Following SLM fabrication, a series of heat treatments were applied to improve the mechanical properties of the as-built samples. The microstructure precipitates distribution and evolution, and mechanical properties of SLM C-X stainless steels in the as-built and heat-treated conditions were systematically studied using scanning electron microscope (SEM), X-ray diffraction (XRD), and transmission electron microscope (TEM). The XRD spectrum revealed that solution treatment resulted in the formation of a complete martensite phase, and a reverted austenite (γ’) phase formed after aging treatment. The TEM analysis indicated that numerous dislocations and nanoprecipitates were dispersed within the martensite matrix for both the as-built and aged samples. The rod-like NiAl precipitates with a size range of 3–25 nm for the as-built samples and 7–30 nm for the solution-aged samples were determined through high-resolution TEM (HRTEM), selected area electron diffraction (SAED), and energy-dispersive X-ray spectroscopy (EDS). Furthermore, the microhardness of the SLM C-X stainless steel parts was found to significantly improve from 350 HV0.2 in the as-built state to 510 HV0.2 in the solution-aged state. The ultimate tensile strength (UTS) of the SLM C-X stainless steel parts also increased from 1043 MPa in the as-built state to 1601 MPa after solution-aging heat treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call