Abstract

The effect of the thin membrane on the time evolution of the shock wave induced turbulent mixing between the two gases initially separated by it is investigated using two different sets of experiments. In the first set, in which a single-mode large-amplitude initial perturbation was studied, two gas combinations (air/SF \(_6\) and air/air) and two membrane thicknesses were used. The main conclusion of these experiments was that the tested membrane has a negligible effect on the evolution of the mixing zone, which evolves as predicted theoretically. In the second set, in which similar gas combinations and membrane thicknesses were used, small amplitude random-mode initial perturbation, caused by the membrane rupture, rather than the large amplitude single-mode initial perturbation used in the first set, was studied. The conclusions of these experiments were: (1) The membrane has a significant effect on the mixing zone during the initial stages of its growth. This has also been observed in the air/air experiment where theoretically no growth should exist. (2) The membrane effect on the late time evolution, where the mixing zone width has reached a relatively large-amplitude, was relatively small and in good agreement with full numerical simulations. The main conclusion from the present experiments is that the effect of the membrane is important only during the initial stages of the evolution (before the re-shock), when the perturbations have very small amplitudes, and is negligible when the perturbations reach relatively large amplitudes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.