Abstract

To differentiate the contributing factors (blood or encapsulated dye) leading to the release of encapsulated dyes from liposomes after laser exposure, we initiated an in vitro experimental study. The release of encapsulated calcein was quantified under various experimental conditions in whole blood and in buffered solution containing high-density lipoprotein. Generally, the amount of dye release improved with an increase in laser power, with a maximum release of approximately 80% of encapsulated dye. Because the laser exposure was not continuous, only 80% of each sample was actually exposed. Therefore, 80% release may be thought of as total release. In a lipoprotein/buffer mixture, the 488 nm wavelength caused greater dye release than the 577 nm wavelength, because the maximum absorption of calcein is near 488 nm. The laser wavelength at 577 nm, however, caused greater release in the blood mixture, reflecting the peak absorption of hemoglobin at near 577 nm. At a 3 x higher liposome concentration, the differences in the effects of wavelengths on the release of dye from liposomes were insignificant. Although the 577 nm wavelength is an optimum wavelength for dye and drug delivery in the presence of blood, the 488 nm wavelength might also be suitable for the release of dye from the liposomes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call