Abstract

The increasing resistance of many pathogens to most of the common antimicrobials requires the development of new substances with more effective antimicrobial properties. In the present work, we investigated the mechanism of the antimicrobial activity of novel water soluble ammonium quaternary benzanthrone (Compound B) on model membranes, composed of dipalmitoylphosphatidylcholine, 1-palmitoyl-2-oleoylphosphatidylcholine, dipalmitoylphosphatidylglycerol, 1-palmitoyl-2-oleoylphosphatidylglycerol, and dipalmitoylphosphatidylethanolamine (DPPE). The lipids were chosen to represent a model of a bacterial membrane. The changes in surface pressure of the model membranes, before and after the addition of Compound B, were studied by the Langmuir's monolayer method, and the compressional modulus for each monolayer was determined. In addition, the surface morphology of the lipid monolayers before and after injection of Compound B was monitored by Brewster Angle Microscopy. The results showed that Compound B penetrated all the monolayers studied. The most noticeable effects were found with the negatively charged phosphatidylglycerols and with DPPE leading to the conclusion that the electrostatic interactions between the compound and the lipid head groups and the possible formation of hydrogen bonds between the amino group of the ethanolamine and the keto groups in the structure of Compound B are of great importance. In addition, the penetration ability of the benzoquinone with all phospholipids studied was stable even at higher values of the surface pressure, i.e. thicker monolayers, due to the hydrophobic interaction, which plays also an important role for the antimicrobial activity of Compound B.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call