Abstract

This work investigates the mechanical properties of different scratch resistant coatings, namely, a mixture of 3-glycidoxypropyltrimethoxysilane (GPTMS) with either colloidal silica particles or tetraethoxysilane (TEOS). Coatings were prepared by the hydrolysis and the condensation of the precursor's alkoxide (sol–gel process) with thermally catalyzed polymerization of epoxy ring of GPTMS. Dip deposition techniques were used on silicon substrate.The nanoindentation technique was used to analyze the force required to indent the coating with a diamond tip. At low forces, this technique, based on indentation depth, predicts the hardness and the elastic modulus of the coating, while at higher forces, cracks appear. Another analysis based on geometric approach, namely, the crack length, allows the determination of both coating and interface toughness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.