Abstract

Composite modified double base (CMDB) propellants are heterogeneous propellants in which properties are significantly improved by adding solid particles into the polymer matrix. A molecular group interaction model that can predict the mechanical properties of polymers through a molecular structure is used to predict the viscoelastic behavior of the CMDB propellant. Considering that the addition of solid particles will improve the crosslinking degree between polymer molecules and reduce its secondary loss peak, the input parameters of the model are modified through dynamic mechanical analysis (DMA) experimental data. By introducing the strain rate into the expression of model glass transition temperature, the mechanical properties of propellant over a wide strain range ( 1.7 × 10 − 4 s-1 ~ 3000 s-1) are obtained. The reliability of the model is verified by comparison with uniaxial compression test data. By modifying the input parameters of the model, the effects of different mass ratios of nitrocellulose (NC)/nitroglycerin (NG) on the mechanical properties of the CMDB propellant were analyzed. The results show that the glass transition loss increases with increasing mass ratio of NC/NG, while Young’s modulus and yield stress decrease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.