Abstract

In this work, the purpose of the study was to explore the influence of laser shock peening (LSP) on the mechanical behavior and microstructural response of 40CrMo steel. The residual stress at depth direction and the microstructural evolution of 40CrMo steel specimens without and with LSP treatments were tested by residual stress tester and transmission electron microscopy (TEM). The microhardness at depth direction and the tensile properties at room temperature were measured. Moreover, the effects of LSP on the ability to resist wear of 40CrMo steel were analyzed, and the worn morphologies characteristics were observed by scanning electron microscope (SEM). The results demonstrated that LSP led to the surface residual stress convert from tensile stress to compressive stress, while the surface compressive residual stress tested parallel to the laser path of the specimen subjected to LSP reached −425 MPa. After the LSP process, the average surface microhardness reached 338 HV, which increased by 21.58% than that of the untreated sample. LSP could enhance the strength without losing plasticity significantly, while the average tensile strength reached 1165 MPa, and the fracture elongation reached 13.9%. After a friction and wear test, the mass loss of the sample after LSP treatment reduced by 27.5% compared to the original sample. The increase in dislocation density and the formation of deformation twins generated by LSP played a key role in enhancing the mechanical behavior of 40CrMo steel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.