Abstract

AbstractDeformation properties of body-centered-cubic transition metals are controlled by the core structure of screw dislocations and their studies involve extensive computer simulations. In this paper we present the recently constructed bond-order potentials (BOP) that are based on the realspace parametrized tight-binding method. In order to examine the applicability of the potentials we have evaluated the energy differences of alternative structures, investigated several transformation paths leading to large distortions and calculated phonon dispersions. Using these potentials we have calculated γ-surfaces that relate to the dislocation core structures and discuss then the importance of directional bonding in studies of dislocations in transition metals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.