Abstract

Long-term (155 weeks) Pb concentrations, following partial lead service lines replacements (PLSLR), were measured in a flow through pilot made of harvested lead service lines (LSL) from the distribution system of the City of Montreal. The present study also investigates how release of Pb from full and partial LSLs is influenced by: pipe diameter, decrease in chloride-to-sulfate mass ratio (CSMR) from 0.9 to 0.3, addition of orthophosphate (1 mg P/L), and increase in pH to 8.3. Pb concentrations were measured after 16 h of stagnation and under flow conditions. In this study, Pb concentrations did not decrease, in the long term, after partial LSL replacement. Moreover, the most effective corrosion control treatment in full LSLs was the addition of orthoP. In contrast, the decrease of the CSMR best reduced lead release from partial LSLs. The impact of pipe configuration therefore influenced the effectiveness of corrosion control treatments. It is noteworthy that the increase in Pb concentrations following PLSLR were attributed to particulate Pb release from the galvanic section of the pipe. The occurrence of galvanic corrosion, caused by the connection between Pb and copper pipes, adds a new source of Pb in the partial LSL. At least, this new source of lead has to be offset by the removal of a long enough section of LSL during PLSLR. Full LSL replacements may be warranted to minimize the exposure of consumers to elevated Pb levels caused by galvanic corrosion in LSLs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call