Abstract

The triplet state of isolated reaction centers of Rhodopseudomonas sphaeroides R-26 has been studied by fluorescence-detected electron spin resonance in zero magnetic field (FDMR) at 4.2 K. The sign of the FDMR resonance monitored at the long-wavelength fluorescence band is positive (fluorescence increase); this confirms the earlier interpretation (Hoff, A.J. and Gorter de Vries, H. (1978) Biochim. Biophys. Acta 503, 94–106) that the negative sign of the FDMR resonance of the reaction center triplet state in whole bacterial cells is caused by resonant transfer of the singlet excitations from the antenna pigments to the trap. By monitoring the FDMR response as a function of the wavelength of fluorescence, we have recorded microwave-induced fluorescence spectra. In addition to the positive microwave-induced fluorescence band peaking at 935 nm, at 905 nm a negative band was found. The resonant microwave frequencies for these two bands, i.e., the values of the zero-field splitting parameters | D| and | E| of the triplet state being monitored, were different, those of the 905 nm microwave-induced fluorescence band being identical to the resonant microwave frequencies measured with absorption-detected zero-field resonance (Den Blanken, H.J., Van der Zwet, G.P. and Hoff, A.J. (1982) Chem. Phys. Lett. 85, 335–338), a technique that monitors the bulk properties of the sample. From this result and its negative sign, we tentatively attribute the 905 nm microwave-induced fluorescence band to a small (possibly less than 1%) fraction of antenna bacteriochlorophylls that are in close contact with the trap. The positive 935 nm microwave-induced fluorescence band with resonant microwave frequencies deviating from the bulk material is ascribed to a minority of primary donor bacteriochlorophyll dimers, which have a higher than normal fluorescence yield because of a somewhat slower charge-separation reaction. Is it likely that practically all long-wavelength fluorescence of isolated reaction centers stems from such impaired reaction centers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call