Abstract

Owing to their high specific capacity and abundant reserve, Cu x S compounds are promising electrode materials for lithium‐ion batteries (LIBs). Carbon compositing could stabilize the Cu x S structure and repress capacity fading during the electrochemical cycling, but the corresponding Li+ storage mechanism and stabilization effect should be further clarified. In this study, nanoscale Cu2S was synthesized by CuS co‐precipitation and thermal reduction with polyelectrolytes. High‐temperature synchrotron radiation diffraction was used to monitor the thermal reduction process. During the first cycle, the conversion mechanism upon lithium storage in the Cu2S/carbon was elucidated by operando synchrotron radiation diffraction and in situ X‐ray absorption spectroscopy. The N‐doped carbon‐composited Cu2S (Cu2S/C) exhibits an initial discharge capacity of 425 mAh g−1 at 0.1 A g−1, with a higher, long‐term capacity of 523 mAh g−1 at 0.1 A g−1 after 200 cycles; in contrast, the bare CuS electrode exhibits 123 mAh g−1 after 200 cycles. Multiple‐scan cyclic voltammetry proves that extra Li+ storage can mainly be ascribed to the contribution of the capacitive storage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.