Abstract

Excessive lipid accumulation is a serious condition. Therefore, we aimed at developing safe strategies using natural hypolipidemic products. Lingzhi is an edible fungus and potential lipid suppression stimulant. To use Lingzhi as a functional hyperlipidemic ingredient, response surface methodology (RSM) was conducted to optimize the time (X1) and enzyme usage (X2) for the hydrolysate preparation with the highest degree of hydrolysis (DH) and % yield. We encapsulated the hydrolysates using nanoscale liposomes and used proteomics to study how these nano-liposomal hydrolysates could affect lipid accumulation in adipocyte cells. RSM analysis revealed X1 at 8.63 h and X2 at 0.93% provided the highest values of DH and % yields were 33.99% and 5.70%. The hydrolysates were loaded into liposome particles that were monodispersed. The loaded nano-liposomal particles did not significantly affect cell survival rates. The triglyceride (TG) breakdown in adipocytes showed a higher TG increase compared to the control. Lipid staining level upon the liposome treatment was lower than that of the control. Proteomics revealed 3425 proteins affected by the liposome treatment, the main proteins being TSSK5, SMU1, GRM7, and KLC4, associated with various biological functions besides lipolysis. The nano-liposomal Linzghi hydrolysate might serve as novel functional ingredients in the treatment and prevention of obesity

Highlights

  • IntroductionModern functional food products are available on the market, ranging from isolated nutrients, dietary supplements, and specific products to processed or engineered foods

  • The present study was aimed at Lingzhi hydrolyzing proteins using response surface methodology (RSM) to study the effect of the processing conditions including time, enzyme usage on degree of hydrolysis (DH), and product yield of the resulting hydrolysates

  • These results indicate that our liposome formulations may be suitable as oral of delivery loaded liposome would be in functional food ingredients, this concentration wasapplication used in particles due to their stable behavior through the oral route

Read more

Summary

Introduction

Modern functional food products are available on the market, ranging from isolated nutrients, dietary supplements, and specific products to processed or engineered foods. Peptides from foodstuff are candidates for functional food ingredients due to their beneficial health aspects such as immune-boosting, anti-oxidative stress, hypolipidemic and tumor suppressing activity [1,2]. One of the above-mentioned beneficial aspects is the hypolipidemic activity on adipocytes, affecting lipid storage, directly associated with obesity, a contemporary health problem. Obesity is caused by excessive triacylglycerol (TAG)

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.