Abstract

The propagation of lower hybrid (LH) waves in a tokamak plasma in the presence of an LH resonance surface is studied experimentally with the use of a specially elaborated technique based on the backscattering of the probing microwave radiation in the upper hybrid resonance region. The technique provides resolution in the wave vectors of the scattering density fluctuations. The conditions are determined under which the LH wave propagates in accordance with the predictions of linear theory and is converted into the short-wave-length ion Bernstein mode. The parameter range is found in which the predictions of linear theory fail to hold and the nonlinear effects come into play during LH wave conversion. The radial wavelengths of the LH and ion Bernstein waves are determined.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.