Abstract

The ligand substitution reaction Fe(CN)5H2O3− + pyrazine → Fe(CN)5 pyrazine3− + H2O has been studied in sodium dodecyl sulfate SDS, hexadecyltrimethylammonium bromide, CTAB, and salt aqueous solutions at 298.2 K. Kinetics were studied in dilute and concentrated salt solutions and in SDS and CTAB solutions at surfactant concentrations below and above the critical micelle concentration. Experimental results show that salt effects can be explained by considering the interaction between the cations present in the working media which come from the background electrolyte, and the Fe(CN)5H2O3− species in the vicinity of the cyanide ligands. This interaction makes the release of the aqua ligand from the inner-coordination shell of the iron(II) complex to the bulk more difficult resulting in a decrease of the reaction rate when the electrolyte concentration increases. Kinetic data in surfactant solutions show that not only micellized surfactants are operative kinetically, but also nonmicellized surfactants are influencing the reactivity. © 1997 John Wiley & Sons, Inc. Int J Chem Kinet 29: 377–384, 1997

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call