Abstract

The excited-state dynamics of two oligothiophenes, 5,5'-dicarboxyhaldehyde 2,2',5',2' '-terthiophene and 5-carboxyhaldehyde 2,2',5',2' '-terthiophene, were studied by time-resolved fluorescence spectroscopy, in the femtosecond regime. The isotropic and anisotropic parameters of their fluorescence were calculated. The angle (alpha) between the absorption and emission molecular dipoles was estimated from the initial fluorescence anisotropy. The effect of the chemical substituents, at the ends of the main chain of the molecule, on the temporal behavior of the fluorescence was investigated. Particularly, the nonsymmetric oligothiophene molecule (containing one aldehyde group) exhibits shorter excited-state isotropic decay time than the symmetric one (containing two aldehyde groups). This is due to the higher value of the emission dipole moment of the nonsymmetric oligothiophene in comparison with that of the symmetric one. Additionally, the two materials have almost the same anisotropic fluorescence parameters, and this is attributed to the same rotational motions in the excited state due to their similar molecular structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.