Abstract
Isothermal bainitic transformation of a lean medium-Mn steel containing (in mass%) 0.18C–3.6Mn–1.7Al–0.23Si–0.2Mo–0.04–Nb after full austenitization at 1100 ºC was studied by means of high resolution dilatometry. The effects of isothermal holding temperatures ranging from 450 to 350 °C on the bainitic transformation kinetics was studied experimentally characterizing the microstructure present after a holding time ranging from 15 min to 2 h. The obtained results showed that the bainitic transformation is uncompleted at temperatures above 425 °C. The carbon enrichment of the austenite during isothermal treatment at 450 °C and 425 °C is not enough to avoid martensitic transformation of the austenite during cooling to room temperature. Thus, it is obtained a mixed structure including bainitic ferrite and martensite. Decreasing the austempering temperature resulted in a more pronounced bainite formation. The kinetics of the transformation during austempering at 350ºC is quite similar to that observed at 400 °C, so that 60 min are needed in both cases to complete the reaction. However, local variations in chemical composition associated to segregation of Mn and Al during casting solidification results in differences in the transformation rate of bainitic reaction between different areas in the material. A balance difference between the dendritic and interdendritic areas is responsible for the differences observed among test samples in the kinetics of the isothermal bainitic transformation and the final microstructure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.