Abstract
The deformation and re-crushing characteristics of different lithological caving crushed gangues in mine goaf directly affect the overburden strata movement, which significantly affects the surface subsidence of mining goaf. The effect of particle size on the re-crushing characteristics of different lithological caving crushed gangues in mine goaf is investigated in this study based on an innovative compression–AE (acoustic emission) measuring method. The results showed the following: (1) The compression deformation was divided into three stages: rapid, slow, and stable compaction. With the increase in axial pressure, the large particle skeletons were destroyed, medium particles were displaced and slid, and small particles filled the pores. (2) For singular lithologies, stress was positively correlated with pressure, and porosity was negatively correlated with stress. The composite sample was between the singular gangue samples. (3) The fractal dimension of crushed gangue samples was exponentially related to the proportion of gangue in singular and combined lithologies. (4) The cumulative AE count and energy of the combined lithological gangue samples were between those of the singular samples. The research results provide a theoretical foundation for further research into the characteristics of the overlying strata, surface movement, and safety management of the goaf.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.