Abstract

To investigate the influence of the guide vane height on the cyclonic flow characteristics of guide vane cyclones, this paper mainly adopts a combination of numerical simulation and physical experiments, taking the guide vane height as the research object, analysing the internal spiral flow generation law through the flow velocity distribution in each section of the cyclone and the change trend along the course and comparing the tangential velocity, radial velocity and axial velocity characteristics of the cyclone at different guide vane heights. The results show that the tangential velocity increases with the increase in the guide vane height on the cyclone and then decreases. When the ratio between the height of the guide vane and the inner radius of the cyclone is in the range of 0.5–0.7, a higher−strength and more stable spiral flow can be produced, and the tangential velocity reaches the maximum when the guide vane height is 30 mm and the height−to−diameter ratio is around 0.6. As the height of the guide vane increases, the radial velocity area towards the wall of the tube increases, while the radial velocity area towards the tube axis decreases. The overall distribution of axial flow velocity is similar to that of turbulent flow in a circular tube, and the velocity increases with increasing height of the guide vane. The conclusion of this paper provides a theoretical basis for further optimisation of the cyclone structure parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.