Abstract

Sitafloxacin (STFX) is a new generation of broad-spectrum oral fluoroquinolones. STFX has significantly enhanced antibacterial activity than most similar drugs. Clinically, this drug is mainly used to treat respiratory and urinary tract infections and other serious bacterial infections. In this study, the interaction between sitafloxacin and human serum albumin (HSA) was investigated by spectroscopic methods and molecular simulations. Fluorescence quenching experiments showed that the interaction mechanism between STFX and HSA was static quenching, which was confirmed by time-resolved fluorescence. Thermodynamic parameters and docking results indicated that hydrophobic and electrostatic forces played a key role in this mechanism. Probe experiments and molecular docking results indicated that the major binding of STFX was at site I. 3D fluorescence showed that the insertion of STFX had minimal impact on the microenvironment. Analysis of the protein secondary structure showed that the insertion of STFX had little effect on the secondary structure of the protein. Hydrophobicity experiments showed the slight decrease in the overall hydrophobicity index of the system. Molecular dynamics simulations further validated the stability of the HSA-STFX complex. This study are useful for further drug development, in vivo toxicity studies, and can provide guidance for the clinical application of STFX to study its pharmacokinetic properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.