Abstract

Determining the interaction between surface water and groundwater is crucial for the protection of groundwater resources. Based on the data of natural geography, geological and hydrogeological conditions, environmental isotopes, and groundwater hydrochemical components, we investigated the interaction between Yellow River water and groundwater in Henan Province, China. The recharge range and interaction amount of the groundwater aquifer from the Yellow River lateral seepage were also analysed, and the influence of the lateral seepage of the Yellow River on groundwater hydrochemical type was studied. The results showed that, firstly the transverse seepage range of the north bank of the Yellow River was larger (approximately 20 km) than that of the south bank (approximately 10 km). The main groundwater recharge sources were atmospheric precipitation and the Yellow River, of which the latter accounted for 50.1%. Secondly, in Sections 1–4, the lateral seepage amounts in the north bank were 1476.94, 505.89, 40.88, and 65.7 m3/a·m, respectively. The single-width permeability of typical Section 2 was larger upstream than downstream and larger in the north than in the south. Thirdly, the lateral seepage of the Yellow River significantly influenced the hydrochemical types of groundwater. From upstream to downstream and from proximal to distal location from the Yellow River, the hydrochemical types changed from single to complex and the salinity increased gradually. Fourthly, the annual average lateral seepage groundwater recharge quantity of the Yellow River was 25,114.36 × 104 m3/a between 2001–2019.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call