Abstract

The results of examination of the insulating magnetic field in an accelerating ion diode are presented. This field is produced in order to suppress the electron current and thus enhance the neutron yield of the D(d, n)3He nuclear reaction. The following two designs are discussed: a gas-filled diode with inertial electrostatic confinement of ions and a vacuum diode with a laser-plasma ion source and pulsed magnetic insulation. Although the insulating field of permanent magnets is highly nonuniform, it made it possible to extend the range of accelerating voltages to U = 200 kV and raise the neutron yield to Q = 107 in the first design. The nonuniform field structure is less prominent in the device with pulsed magnetic insulation, which demonstrated efficient deuteron acceleration with currents up to 1 kA at U = 400 kV. The predicted neutron yield is as high as 109 neutrons/pulse.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call