Abstract
Over the last ten years, low pressure plasma solutions for materials surface treatment have been remarkable. Nevertheless, the deposition of films with a uniform thickness on 3D complex shapes is still a challenge for various deposition systems. In several cases, concavities and different substrate orientations and motions lead to macroscopic shadowing and affect the thickness uniformity. The objective of this work is to describe a modelling method able to predict the layer thickness on any surface of 3D substrates in motion and subject to vapour transported in a low pressure vessel. The meshing of objects with Delaunay-triangulation enables the modelling of complex shapes. The deposition process consists of several Monte Carlo simulations involving first the computing of the angular and energy particles distribution from the source, second their transport through the chamber and last the deposition on a meshed substrate. The algorithm is optimised with a “cell-list-linked-like” method and differs from existing models by the computation speed.The benchmarking between simulation and experimental results for Cr, Ag and Ta deposition at various pressures and on moving complex substrates with several shadowed faces is presented. Moreover, particle energy distribution will be discussed for each sample surface, mode and pressure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.