Abstract
A deep analysis of the injection rate characteristics and spray behaviour of the most used nozzle types in diesel engines [microSAC and valve covered orifice (VCO)] has been carried out. In order to compare the injection characteristics and the spray behaviour of both nozzle types, several experimental installations were used, such as the steady flow test rig, injection rate test rig, spray momentum test rig, and nitrogen test rig, to obtain a full hydrodynamic and spray characterization. The study of the flow in both nozzles was analysed under steady flow conditions in the steady flow test rig and in real unsteady flow conditions in the injection rate test rig and the spray momentum test rig. The macroscopic properties of the spray (tip penetration and spray cone angle) were characterized using a high-pressure test rig. From the point of view of the internal flow behaviour, the results showed interesting differences in the permeability of both nozzle geometries, with a higher discharge coefficient in the microSAC nozzle. However, from the point of view of air entrainment, the results showed a better quality of fuel-air mixing in the VCO nozzle. Besides the evidence from the experimental results, a theoretical analysis was carried out in order to identify the most important parameters that determine the spray behaviour and thus justify the different macroscopic behaviour of both nozzles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.