Abstract

AbstractPhysically and dynamically vulcanized (TPV) mixtures of polypropylene (PP) and ethylene propylene diene terpolymer (EPDM) are prepared by extrusion in order to improve the impact resistance of PP. To enhance the chemical compatibility and provide better interaction between the PP and EPDM in the physical mixtures, both polymers are modified with maleic anhydride (MAH) in solution using xylene as solvent and dicumyl peroxide (DCP) as initiator. The qualitative and quantitative determination of the degree of grafting is study by Fourier Transform Infrared Spectroscopy (FTIR) and varying the amount of DCP and/or amount of MAH in order to determine the optimum amounts to obtain the highest degree of grafting. The effect of the relation of PP/EPDM, the amount of reinforcement filler and mix rate are studied for modified polymer mixtures (PP‐g‐MAH/EPDM‐g‐MAH). For the TPV of PP/EPDM the effects of amount and triallylisocyanurate (TAC) as coupling agent in presence of different amounts of DCP are studied. The physical mixtures of modified polymers prepared with a PP/EPDM ratio of 80/20 and the TPVs blends prepared with a PP/EPDM ratio of 70/30 and containing 15% filler at 60 rpm show the highest impact resistance. The impact resistance, melt flow index and hardness of the different mixtures are measured to determine their possible applications to prepare front panels and bumpers for automobiles by injection molding.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call