Abstract

The aim of present work is to estimate the impact of gas refractive index shift on the image quality of projection lens caused by the change of environment condition. This work in the paper consists of two parts: a)when temperature rises or reduces, how gas refractive index changes and the wave front error comes up; b)when gas pressure changes. The model objective lens developed for simulation is a US patent lens whose NA <1 and wave front RMS < 5nm in all fields. This paper includes an illustration of the impact of gas refractive index shift on optical system data, wave front, and aberration. According to the analysis, wave front RMS of projection lens will increase about 10nm if the temperature changed by 0.1K or the gas pressure by 100 Pa. Comparing to origin wave front RMS of the patent lens, 5nm, the change caused by gas temperature and pressure can’t be neglected. It proves the necessary of compensating or controlling the optical path change resulted from gas refractive index shift during the lithography projection lens work process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.