Abstract

Based on the traditional Mn13, the super-high manganese steel Mn18 was melted by means of adjusting the amount of C, Mn, adding a certain amount of alloying elements Cr, Mo etc and modification. The results show that with low-impact energy abrasive wear for 60 minutes, the wear resistance of super-high manganese steel Mn18 was greatly improved by contrast with that of Mn13, and the hardness of wear surface was increased slowly with the elapse of the wear time. However, under the high impact energy, the wear resistance of Mn18 is 1.5 times as high as that of Mn13, and the hardness of wear surface was increased to HB440 in a short time. The main wear forms were: cutting, gouging wear and plastic deformation. Typical TEM morphologies of subsurface wear structure consist mostly of high density dislocations, deformation bands.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.