Abstract
Prolonged confinement in cramped spaces can lead to derangements in brain function/structure, yet the underlying mechanisms remain unclear. To investigate, we subjected mice to restraint stress to simulate long-term narrow and enclosed space confinement, assessing their mental state through behavioral tests. Stressed mice showed reduced center travel and dwell time in the Open Field Test and increased immobility in the Tail Suspension Test. We measured lower hippocampal brain-derived neurotrophic factor levels and cortical monoamine neurotransmitters (5-HT and NE) in the stressed group. Further examination of the body’s immune levels and serum metabolism revealed immune dysregulation and metabolic imbalance in the stressed group. The results of the metabolic network regulation analysis indicate that the targets affected by these differential metabolites are involved in several metabolic pathways that the metabolites themselves participate in, such as the “long-term depression” and “purine metabolism” pathways. Additionally, these targets are also associated with numerous immune-related pathways, such as the TNF, NF-κB, and IL-17 signaling pathways, and these findings were validated using GEO dataset analysis. Molecular docking results suggest that differential metabolites may regulate specific immune factors such as TNF-α, IL-1β, and IL-6, and these results were confirmed in experiments. Our research findings suggest that long-term exposure to confined and narrow spaces can lead to the development of psychopathologies, possibly mediated by immune system dysregulation and metabolic disruption.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.