Abstract
A combined quantum mechanical statistical mechanical method has been used to study the solvation of the hydronium ion in water. The system is divided in three parts, a quantum core (the ion), 89 classical water molecules and a dielectric continuum. The water molecules are represented using a polarizable potential. The first solvation shell of the ion consists of three water molecules linked by hydrogen bonds to the hydrogen atoms of the ion. The calculations show conformations where up to three water molecules directly interact with the oxygen of the ion. The intramolecular bond length in the ion increases by 0.080 a.u. and the angle decreases in 6.9° upon solvation relative to the gas phase value.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.