Abstract
In this work, the catalytic effects of FeCl3 toward the hydrogen storage properties of the MgH2–Na3AlH6 composite were investigated for the first time. The temperature-programed desorption results indicated that the onset temperature of the hydrogen release of a 10 wt % FeCl3-doped MgH2–Na3AlH6 composite was ∼30 °C lower than that of the undoped MgH2–Na3AlH6 composite. The addition of FeCl3 into the MgH2–Na3AlH6 composite resulted in improved absorption and desorption kinetics performance. The absorption/desorption kinetics measurements at 320 °C (under 33 and 1 atm hydrogen pressure, respectively) indicated that within 10 min, the doped sample absorbed ∼4.0 wt % and desorbed ∼1.5 wt % hydrogen. By comparison, the undoped sample absorbed only ∼2.1 wt % and desorbed only ∼0.6 wt % hydrogen under the same conditions and time. Comparably, the apparent activation energy value of the doped composite is 128 kJ/mol, which is 12 kJ/mol lower than that of the undoped composite (140 kJ/mol). The formation of the new species of MgCl2 and Fe in the doped composite was detected from X-ray diffraction analysis after heating and absorption processes. These two components were believed to play a vital role in reducing the decomposition temperature and kinetics enhancement of the MgH2–Na3AlH6 composite.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.