Abstract
Physical modelling tests were conducted in the wave flume of Artelia’s hydraulic laboratory to study the hydraulic response/stability of a rubble mound breakwater made with a non-standard core composed of crushed concrete blocks (tetrapod). This design carried out by EDF, is aimed at having high permeability and fits in an eco-design approach, through the reuse of existing materials already on site. Eventually, the hydraulic efficiency of three different sections were tested and compared, all sections having the same armour layer and the same main dimensions but different {core; filter} systems : core only made with crushed tetrapod, core and underlayer made with crushed tetrapod (no filter layers with rocks) and baseline design (quarry run core and rock underlayer). Several responses were studied: armour layer stability, overtopping and transmission of the structure and head loss on both sides of the structure with an inflow/outflow system in the rear side basin set up in the wave flume. This case study illustrates 1) the importance of the physical modelling approach to testing unusual structures, as part of an eco-design approach, where the use of standard design formulas does not allow to verify the hydraulic behaviour of a high permeable breakwater and 2) also shows that unconventional design can lead to satisfactory hydraulic results.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: CoastLab 2024: Physical Modelling in Coastal Engineering and Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.