Abstract

An in-depth and systematic investigation is carried out to find the role of oxide growth temperature in determining the quality of the resulting gate oxide in MOS devices. Performance of fresh devices as well as degradation under hot-carrier stress and radiation exposure are studied using MOS capacitors and MOSFETs. Experimental results indicated that better charge trapping properties and interface endurance to both hot carrier-stress and ionizing radiation can be realized by elevating the gate oxidation temperature. Substantial experimental evidence is provided to establish that interface state generation during stress is mainly responsible for the degradation of various MOSFET parameters. These findings point out that rapid thermal processing may be the technique for the growth of ultrathin gate oxides for deep-submicrometer MOS technology, at least from the quality and reliability point of view. >

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call