Abstract

Valuable information on the correlation structure of the nuclear medium is stored in the generalized momentum distribution n(p,Q), the Fourier transform of the half-diagonal two-body density matrix ρ_{2η}(r_1,r_2,r'). In this paper, we present a numerical calculation of n(p,Q) for two Jastrow-correlated models of symmetrical nuclear matter based on the structural decomposition of n(p,Q) derived by Ristig and Clark and on a Fermi-hypernetted-chain procedure. Results exhibit significant departures from the ideal Fermi gas case in certain kinematic domains; this behaviour indicates the strong short-range correlations present in these models. Nevertheless, such deviations are less prominent than in earlier low- cluster-order calculations. The results are also used to judge the quality of Silver's approximation for n(p,Q).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call