Abstract

A study of the free surface flow on an ogee-crested fish bypass is presented. The commercial computational fluid dynamics (CFD) code Fluent 6.1 was used to perform the simulations. Structured/unstructured hybrid grids were used to accommodate the complex geometry that included gate slots, flow control gates, and an aeration slot. The volume of fluid (VOF) approach was used to model the water/air interface. The fish bypass exhibits complex free surface features including free nappes and air entrainment from the air slots. Free surface elevations on both sides of the nappe, pressure along the ogee surface, and discharge rating curves were compared against 1:24 experimental data from the laboratory model for different headwater elevations and gate settings. Limited comparison against measured velocities was also performed. Once deemed reliable through validation against experimental data, the computational model was used to analyze the flow field, supplementing the areas of limited experimental data. Though the paper presents the final fish bypass design, CFD was used to guide the design process and provide insight for several variations in the geometry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.