Abstract

This work proposes an investigation of the fracturing behavior of polymer nanocomposites. Towards this end, the study leverages the analysis of a large bulk of fracture tests from the literature with the goal of critically investigating the effects of the nonlinear Fracture Process Zone (FPZ).It is shown that for most of the fracture tests the effects of the nonlinear FPZ are not negligible, leading to significant deviations from Linear Elastic Fracture Mechanics (LEFM) sometimes exceeding 150% depending on the specimen size and nanofiller content.To get a deeper understanding of the characteristics of the FPZ, fracture tests on geometrically-scaled Single Edge Notch Bending (SENB) specimens are analyzed leveraging a cohesive zone model. It is found that the FPZ cannot be neglected and a bi-linear cohesive crack law generally provides the best match of the experimental data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call