Abstract
AbstractThis work is a continuation of the studies presented in a recent paper by the authors, where the fracture surfaces of pearlitic ductile cast iron under different loading conditions were exhaustively analysed. In this study, fracture surfaces of ferritic ductile cast iron (or ferritic spheroidal graphite cast iron) generated under impact, bending and fatigue loading conditions were characterised and compared. The fracture surfaces were characterised qualitatively and quantitatively from the observation under a scanning electron microscope. The fracture mechanisms in each case were identified. For impact tests, as test temperature increases, the dominant fracture mechanism changes from brittle to ductile. For bending tests, a fully ductile fracture micromechanism dominates the surface. In fatigue tests, the surface shows a mix of flat facets that appear to be cleavage facets and ductile striations, but the typical fatigue striations are not easily found on the fracture surface. Methodologies for the determination of the macroscopic direction of main crack propagation in both ductile and brittle failure modes are proposed. These allow identifying main crack propagation direction with good approximation.The results are potentially useful to identify the nature of loading conditions in a fractured specimen of ferritic spheroidal graphite cast iron. The authors believe that it is necessary to extend the methodologies proposed in samples with different geometry and size, before they can be used to provide additional information to the classical fractographic analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Fatigue & Fracture of Engineering Materials & Structures
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.