Abstract

The efficiency of micro-light-emitting diodes (μ-LEDs) depends enormously on the chip size, and this is connected to sidewall-trap-assisted nonradiative recombination. It is known that the internal quantum efficiency (IQE) of aluminum gallium indium phosphide (AlGaInP)-based red μ-LEDs is much lower than that of nitride-based μ-LEDs. To establish the major reasons giving rise to this huge IQE discrepancy, we examined the limiting factors in the two structures. For the nitride-based InGaN quantum wells, the influences of random alloy fluctuations were examined. A two-dimensional Poisson and drift-diffusion solver was applied to analyze these issues.

Highlights

  • A random number generator is used to generate random atom distributions, and the Gaussian averaging method is adopted for the local indium composition in the quantum wells (QWs) [28]

  • The second considers the factors that bring about the differences in internal quantum efficiency (IQE) between these two kinds of μ-lightemitting diodes (LEDs)

  • The IQE drops significantly for the AlInGaP-based red LEDs, and the efficiency is less than 10% for the

Read more

Summary

Introduction

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.