Abstract

ABSTRACT This study investigates the effects of the electroplating process parameters, such as temperature, graphene concentration in the bath and current density, on the electrical properties of a copper-coated aluminium alloy (AA6082). Based on previous experiences, a full factorial plan was developed and tested through the Design of Experiments (DOE) methodology to find a relation between parameters and properties. After validating the setup and the significance of the three input process parameters, a statistical model for copper electrodeposition is presented; the latter takes into account the physical interaction of the graphene nanoplatelets (GNP). From the results, the GNP amount is able to modify the electrical resistance of the copper coating; in detail, the resistance passes from 0.0319 to 0.02 mΩ, allowing a reduction of about 35% at the highest GNP content. Furthermore, an optimization following the new experimental model to decrease the electrical resistance of the graphene-based coating is presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.