Abstract

Electrocaloric (EC) cooling based on the ability of materials to change temperature by applying an electric field under adiabatic conditions is a relatively new and challenging direction in ferroelectrics research. Analytical and simulation data for the electrocaloric effect (ECE) in 0.75Pb(Mg1/3Nb2/3)O3–0.25PbTiO3 (0.75PMN–0.25PT) bulk ceramic samples are reported. The adiabatic temperature change (ΔT) due to a change of the external electric field has been calculated indirectly from the entropy change. The temperature change increases with an increase in the applied electric field and reaches a maximum of 2.1 K in 25 kV/cm electric field shift near the Curie temperature of 398 K; that is, the cooling ΔT per unit field (MV/m) is 0.896 × 10−6 m K/V. This value is significantly large for bulk ceramics and makes the compound promising for room-temperature electric cooling applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.