Abstract
ABSTRACT Horizontal drilling and multi-stage hydraulic fracturing are the two key technologies for the successful development of shale gas reservoirs. However, there exist large uncertainties in optimizing hydraulic fracturing which affects water retention into shale matrix and gas productivity. In this work, a basic reservoir model with six-stage hydraulic-fracturing treatment was constructed to understand water retention and gas production in shale gas reservoirs. Gas diffusion, gas desorption, Darcy flow as well as non-Darcy flow were considered in this model. Then, a sensitivity study was performed to investigate the effects of hydraulic fractures on water retention and gas conductivity. The results indicate that only 34% of the fracturing water could be recovered back to the surface, and most of them remain in shale formations to interfere with gas production. The increase of fracture half-length, fracture width, fracture permeability, and fracture conductivity will reduce water retention while water retention in shale matrix will increase with the increasing of fracture spacing and fracture number. This work can provide a better understanding of the effects of hydraulic fractures on gas and water flow so as to optimize the hydraulic-fracturing treatment in shale gas reservoirs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Energy Sources, Part A: Recovery, Utilization, and Environmental Effects
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.