Abstract
In the present study, Harmonic Balance Method (HBM) is applied to investigate the performance of passive vibration isolators with cubic nonlinear damping. The results reveal that introducing either cubic nonlinear damping or linear damping could significantly reduce both the displacement transmissibility and the force transmissibility of the isolators over the resonance region. However, at the non-resonance region where frequency is lower than the resonant frequency, both the linear damping and the cubic nonlinear damping have almost no effect on the isolators. At the non-resonance region with higher frequency, increasing the linear damping has almost no effects on the displacement transmissibility but could raise the force transmissibility. In addition, the influence of the cubic nonlinear damping on the isolators is dependent on the type of the disturbing force. If the strength of the disturbing force is constant and independent of the excitation frequency, then the effect of cubic nonlinear damping on both the force and displacement transmissibility would be negligible. But, when the strength of the disturbing force is dependent of the excitation frequency, increasing the cubic nonlinear damping could slightly reduce the relative displacement transmissibility and increase the absolute displacement transmissibility but could significantly increase the force transmissibility. These conclusions are of significant importance in the analysis and design of nonlinear passive vibration isolators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.