Abstract

The safety and sustainability of urban underground spaces have become crucial considerations in development projects. Seepage and cyclic loads are the principal reasons for the instability and failure of old underground space structures. This study investigates the variations in physical fields of underground spaces in cities under the coupling disturbance of seepage and cyclic loads, focusing on underground civil air defense engineering in Beijing as a case study. Different seepage conditions and the effects of seepage–cyclic load coupling were simulated using the numerical calculation software Plaxis 3D V20. The results show that change in groundwater can affect the deformation of underground space, and the severity is related to the quantity and intersection state of tunnels, the location of rivers above, and the strength of materials. The coupling effect of seepage–cyclic load on urban underground space structures is more serious than that of a single percolation. Decrease in material strength and high traffic loads are the principal reasons for the failure of underground structures. A 30% decrease in material strength causes the displacement to increase almost 1.5 times, and maximum displacement under different traffic loads can vary by 3 times. This study holds significant implications for the design, maintenance, and engineering management of underground spaces, emphasizing the importance of sustainable practices in urban development and infrastructure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.