Abstract

The effect of reflection is studied experimentally and theoretically on a high-power 110 GHz gyrotron operating in the TE22,6 mode in 3 μs pulses at 96 kV, 40 A. The experimental setup allows variation of the reflected power from 0 to 33 % over a range of gyrotron operating conditions. The phase of the reflection is varied by translating the reflector along the axis. Operating at a higher efficiency point, at 4:40 T with 940 kW of output power, reflected power exceeding 11% causes a switch from operation in the TE22,6 to simultaneous operation in the TE22,6 and TE21,6 modes with a large decrease of the total gyrotron output power. This switching effect is in good agreement with simulations using the MAGY code. Operating at a more stable point, 4:44 T with 580 kW of output power, when the reflection is increased, the output power remains in the TE22,6 mode but it decreases monotonically with increasing reflection, dropping to 200 kW at 33% reflection. Furthermore, at a reflection above 22%, a power modulation at 25 to 30 MHz is observed, independent of the phase of the reflected wave. Such a modulated signal may be useful in spectroscopic and other applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.