Abstract

Integrated-optical waveguides with a nematic liquid-crystal 4-cyano-4’-pentylbiphenyl (5CB) waveguiding layer have been investigated for different polarizations of incident laser radiation and under a pulsed-periodic electric field. A dependence of the damping coefficient of waveguide modes and the sizes of quasi-steady-state irregularities of nematic liquid-crystal layer on the linear polarization of laser radiation and the strength of pulsed-periodic field has been found experimentally. The correlation length is estimated for waveguiding layer irregularities. The waveguide scattering method has provided a resolution in correlation length exceeding the classical resolution limit by approximately an order of magnitude. The observed decrease in the damping coefficient of waveguide modes and irregularity sizes under external field is explained by the decrease in the correlation length of director fluctuations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call