Abstract

The flotation separation (FS) of both scheelite and calcite minerals with similar physicochemical properties remains challenging, since the Ca active sites exist on their surfaces. The present work investigated the effects of different addition points of MnCl2 on the FS of scheelite and calcite by micro-flotation tests, zeta potential measurements, UV-Vis spectrophotometer measurements, infrared spectrum analysis, and X-ray photoelectron spectroscopy (XPS) tests, and the mechanism of separation is elucidated. Interestingly, the recovery of scheelite was 91.33% and that of calcite was 8.49% when MnCl2 was added after sodium silicate. Compared with the addition of MnCl2 before Na2SiO3, the recovery of scheelite was 64.94% and that of calcite was 6.64%. The sequence of adding MnCl2 followed by Na2SiO3 leads to the non-selective adsorption of Mn2+ on the surface of scheelite and calcite firstly, and later, sodium silicate will interact with it to produce hydrophilic silicate. This substantially enhances the hydrophilicity on the surface of both minerals, making separation impossible. In contrast, the addition of MnCl2 after sodium silicate can promote the formation of a metal silicate and enhance the selectivity and inhibition effect on calcite. Meanwhile, under this dosing sequence, the adsorption of Mn2+ on the scheelite surface offered more active sites for sodium oleate, which improved the scheelite surface hydrophobicity. This leads to a great improvement of the FS effect of scheelite and calcite.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.