Abstract

The effect of irradiation damage on the microstructure evolution and mechanical properties in nanocrystalline (nc) Ni with an average grain size of ∼60nm was studied. Samples were irradiated at doses of 1.6×1015, 2.3×1015, 5×1015 and 2.3×1016 He2+ cm−2 by 12MeV He ions at room temperature. Microstructural parameters like domain size and microstrain were studied in detail using the X-ray diffraction (XRD) technique with the simplified breadth method and Williamson–Hall analysis. The average domain size was found to decrease systematically with the increase in irradiation dose. Microscopic observations made with transmission electron microscopy showed dislocation loops and dislocation networks within the grain interior of the irradiated sample. In addition, irradiation at a higher dose showed small amounts of the sand-like black dots inside some grains, which could be due to the accumulation of point defects. Tensile tests performed on the irradiated sample were compared with unirradiated samples. The irradiated sample showed higher ultimate tensile strength and average work-hardening rate as compared to the unirradiated sample. Nanoindentation studies were performed to study the effect of irradiation on deformation parameters like strain rate sensitivity (m) and activation volume (V*). The value of m was found to increase whereas V* was found to decrease with increase in irradiation dose. Fracture surfaces of the tensile sample were investigated by SEM. The fracture morphology of the unirradiated sample showed dimpled rupture with much large dimple diameter and depth. The irradiated sample also showed dimple rupture but with much finer dimple diameter with wide size distribution and shallow depths.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.