Abstract

Herein, the effect of Fushun oil shale minerals on its kerogen has been investigated. The samples were obtained under non-isothermal conditions at different final temperatures. Scanning electron microscope (SEM) analysis revealed that the silicates were layered and the carbonates were tightly bound to each other. The combination of silicates and carbonates led to close combination of minerals and organic matter and the organic matter was contained in the minerals. The Brunner–Emmet–Teller (BET) experiments conclude that during the non-isothermal pyrolysis process, the specific surface area increased, and then, decreased, which proves the adsorption effect of silicates on oil shale pyrolysis products and the adsorption effect of carbonates was weak. The activation energy of four samples was calculated via Flynn–Wall–Ozawa (FWO) and Friedman kinetic analysis under different heating rates in a non-isothermal process, wherein the average activation energy of the sample containing silicate was 177.60 kJ mol−1 at minimum while that of carbonate was 250.45 kJ mol−1 at maximum, which proves that the catalytic promotion effect of silicate was greater than the inhibition effect of carbonate. The pyrolysis products obtained by Flash pyrolysis-gas chromatography-mass spectrometry (Py-GC/MS) under isothermal pyrolysis conditions were primarily composed of aliphatic hydrocarbon structures, which had different degrees of impact on the production of heteroatoms. This work provides a reliable theoretical basis for future studies on the influence of minerals on pyrolysis of organic matter in oil shale.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.