Abstract
One of the most used secondary dopants in thin film processing of PEDOT:PSS is dimethyl sulfoxide (DMSO). In this work, we present results that explain, from the point of view of impedance spectroscopy, the mechanism of the increase in the conductivity observed on films based on PEDOT:PSS. The results obtained with this technique, combined with others such as AFM, and Raman and UV–vis–NIR spectroscopies, clearly show that there is a thinning of the insulating barrier of PSS surrounding conductive grains of PEDOT. It is shown that the thickness of the insulating barrier is related strongly and inversely with the onset frequency of AC conductivity. However, this is not the only existing effect, because for values beyond the optimal concentration of DMSO, we observe a decrease in the conductivity related with an increase of the separation of the PEDOT grains. The AC measurements and the AFM images also show the clear interplay between the increase of the PEDOT average grain size and the separation between them.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.