Abstract

The chemical composition obviously affects the surface wettability of a three-dimensional (3D) graphene material apart from its surface energy and microstructure. In the hydrothermal preparation, the heteroatom doping changes the chemical composition and wettability of the 3D graphene material. To realize the controllable surface wettability of graphene materials, aminobenzene sulfonic acid (ABSA) was selected as a typical doping agent for the preparation of nitrogen and sulfur co-doped 3D graphene foam (SNGF) using a hydrothermal method. Different from using o-ABSA or p-ABSA as the dopant, SNGF with tunable surface wettability is obtained only when m-ABSA is used. This result indicates that the substituent position of -SO3H group in the benzene ring of ABSA is rather important for the tunable wettability. This work provides some theoretical foundations for dopant selection and some new insights in manipulating the properties of 3D graphene foams by adjusting the configuration of dopants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.