Abstract

By stacking high-precision tidal gravity observations obtained with superconducting gravimeters at six stations in China, Japan, Belgium, France, Germany and Finland, the local systematical discrepancies in the parameter fitting, caused by atmospheric, oceanic tidal loading and the other local environmental perturbations, are eliminated effectively. As a result, the resonance parameters of the Earth’s free core nutation are accurately determined. In this study, the eigenperiod of free core nutation is given as 429.0 sidereal days, which is in agreement with those published in the previous studies. It is about 30 sidereal days less than those calculated in theoretical models (about 460 sidereal days), which confirms the real ellipticity of the fluid core of the Earth to be about 5% larger than the one expected in assumption of hydrostatic equilibrium. The quality factor (Q value) of free core nutation is given as about 9543, which, compared with those determined before based on the body tide observations, is much larger, but more close to those obtained using the VLBI observations. The complex resonance strength is also determined as (−6.10×10−4, −0.01 ×10−4)°/h, which can principally describe the deformation characteristics of an anelastic mantle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.